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● Maximum ne gradient builds up before max. Te gradient and phase with clamped gradients 
• Similar magnetic fluc-

tuations observed
→ Same pedestal

recovery behavior 
in both tokamaks

→ Indicates similar
underlying mech-
anisms/instabilities

● Peeling-Ballooning modes (linear MHD) have a strong dependence on the plasma shape
• Shape variation could suppress certain types of instabilities

● Upper triangularity (d) varied in AUG [6] → PB stability and pedestal modified
• But recovery sequence not affected
→ Presence of fluctuations in both cases indicates inde-

pendency of plasma shaping
→ Non-linearly saturated instabilities [7]
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● High confinement mode (H-mode) enables high fusion 
performance

• Comes with steep pressure gradients at the edge, the 
pedestal

• Pedestal stability is limited by edge localized modes 
(ELMs)

• ELMs expel large particle and heat fluxes towards the 
divertor and wall
→ Potential risk for ITER or a fusion power plant

● Fundamental knowledge on underlying mechanisms 
leading to stability limit is required

• Study of pedestal dynamics in between ELMs
● Distinct pedestal recovery phases observed:

• Phase I: Electron density (ne) gradient [1] and ion 
Temperature (Ti) gradient [2]

• Phase II: Electron temperature (Te ) gradient
• Phase III: gradient saturation
→ Different recovery timescales

● Pedestal localized magnetic fluctuations observed in 
several tokamaks

• In AUG, C-Mod and DIII-D their onsets are linked to 
the profile evolution [3,4,5] 

● Why are observations similar across experiments?
• Detailed experimental characterization provides 

guidance for pedestal modeling

1. Introduction and Motivation

8. Summary 
● Pedestal fluctuations with similar behavior identified and characterized in AUG and DIII-D 

• Experimental observations are independent over achievable range of parameters 
→ Points to a robust underlying mechanism in both machines

● Distinct frequency bands correspond to radially separated, pedestal localized modes
• Onsets throughout the ELM cycle correlated to clamping of individual profile gradients
• Three categories localized: (1) close to the separatrix, (2) Er min and (3) pedestal top
→ Relation of fluctuations and pedestal transport will be studied in further detail

9. Conclusions 
● Modeling challenged by detailed experimental characterization

• Pedestal localized instabilities behave similarly across wide 
parameter ranges
→ Non-linear, global simulations might be necessary

● Future machines might exhibit similar inter-ELM dynamics

2. Comparison: AUG and DIII-D tokamak
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5. Core ne fluctuations impacted

4. d variation: Fluctuations remain unchanged 6. Vertical oscillations to probe the pedestal
● Oscillations introduce a perturbation to the edge current → used for ELM pacing [8,9,10]

• ELMs only triggered when pedestal gradients close to saturation level

● Laser interferometer chords (from core V1 to edge V3) 
see reduced fluctuation level in the core after ELM crash

• Likely the drive for central instabilities vanishes due to 
the loss of energy 

• On chord V3 (nearest to pedestal) a fluctuation band 
in the medium to low frequency range chirps down
→ Onset is connected to the recovery of the maximum

ne gradient

● Medium sized tokamaks
• AUG has metal wall and its 

divertor is optimized for exhaust 
• DIII-D has a carbon wall, a 

larger plasma volume and 18 PF 
coils for flexible shaping

● Compared plasmas are LSN with 
ÑB�B drift to lower divertor

• Variations in Ip, Bt, heating 
scheme and shape

• ELMy H-modes with fELM 40 Hz 
at AUG and 15 Hz at DIII-D
→ Allows for ELM synchronized 
profile analysis

3. Same pedestal recovery phases 

7. Illustration of the experimental observations
● Categories of instabilities:

• Category 1: separatrix
→ Ballooned structure,

after phase I [11]
• Category 2: Er min.
→ HFS response,

after phase II [12]
• Category 3: Ped. top 
→ Onset during

phase III [13,14]
● Non-linear, global models 

required to reproduce 
experimental observations 
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